Carl Shaw Carl Shaw
0 Course Enrolled • 0 Course CompletedBiography
最新な1z0-1110-25テスト対策書試験-試験の準備方法-効率的な1z0-1110-25練習問題
我々の商品の質量を保証するために、専門家たちは商品の開発を研修しています。過去の試験のデータを基づいて、1z0-1110-25問題集を開発しています。現在でも、問題集の更新に働いています。複数の更新を通して、今の的中率高い1z0-1110-25問題集になりました。我々の1z0-1110-25問題集で試験に合格することができると信じています。
テストが来るのを静かに待っている場合は、目を覚まして、別の方法で1z0-1110-25試験を受ける準備ができている必要があります。最近の1z0-1110-25ガイド急流の効果が資格試験を通じて受験者の秘密兵器になったことを示した後、1z0-1110-25トレーニング資料を勉強して「テストデータ」を書くことがあなたの選択に最適です。 1z0-1110-25ガイドトレントのユーザーは、1z0-1110-25試験で予期しない結果を得ることができます。
1z0-1110-25練習問題、1z0-1110-25認定資格
現在多くの会社では、特別なGAQM、EMC、ISC認証などを持っているなら、高い給料が得られています。我々の提供する1z0-1110-25問題集はあなたに試験に順調に合格することができます。試験に参加する前に、我々の模擬問題集1z0-1110-25資料が必要です。この問題集を選択したら、あなたは100%試験に合格することができます。
Oracle 1z0-1110-25 認定試験の出題範囲:
トピック | 出題範囲 |
---|---|
トピック 1 |
|
トピック 2 |
|
トピック 3 |
|
トピック 4 |
|
トピック 5 |
|
Oracle Cloud Infrastructure 2025 Data Science Professional 認定 1z0-1110-25 試験問題 (Q87-Q92):
質問 # 87
You want to use ADSTuner to tune the hyperparameters of a supported model you recently trained. You have just started your search and want to reduce the computational cost as well as assess the quality of the model class that you are using. What is the most appropriate search space strategy to choose?
- A. ADSTuner doesn't need a search space to tune the hyperparameters
- B. Detailed
- C. Pass a dictionary that defines a search space
- D. Perfunctory
正解:D
解説:
Detailed Answer in Step-by-Step Solution:
* Objective: Select an ADSTuner strategy to minimize cost and assess model quality.
* Understand ADSTuner: Optimizes hyperparameters with configurable search spaces.
* Evaluate Options:
* A: Detailed-Exhaustive, high cost-incorrect.
* B: No search space-False; tuning requires a space.
* C: Perfunctory-Quick, low-cost assessment-correct.
* D: Dictionary-Defines space but not a strategy.
* Reasoning: Perfunctory balances cost and initial quality check.
* Conclusion: C is correct.
OCI documentation states: "ADSTuner's perfunctory strategy (C) performs a quick, low-cost search to assess model quality, ideal for initial tuning." Detailed (A) is costly, B misstates requirements, and D is a method, not a strategy-only C fits the goal.
Oracle Cloud Infrastructure ADS SDK Documentation, "ADSTuner Search Strategies".
質問 # 88
You have received machine learning model training code, without clear information about the optimal shape to run the training on. How would you proceed to identify the optimal compute shape for your model training that provides a balanced cost and processing time?
- A. Start with a random compute shape and monitor the utilization metrics and time required to finish the model training. Perform model training optimization and performance tests in advance to identify the right compute shape before running the model training as a job.
- B. Start with a small shape and monitor the utilization metrics and time required to complete the model training. If the compute shape is fully utilized, change to compute that has more resources and rerun the job. Repeat the process until the processing time does not improve.
- C. Start with the strongest compute shape Jobs support and monitor the job run metrics and time required to complete the model training. Tune the model so that it utilizes as much compute resources as possible, even at an increased cost.
- D. Start with a smaller shape and monitor the job run metrics and time required to complete the model training. If the compute shape is not fully utilized, tune the model parameters, and rerun the job. Repeat the process until the shape resources are fully utilized.
正解:B
解説:
Detailed Answer in Step-by-Step Solution:
* Objective: Find optimal compute shape balancing cost and time.
* Approach: Iterative testing with metrics (e.g., CPU/memory usage, runtime).
* Evaluate Options:
* A: Tuning parameters when underutilized-focuses on model, not shape optimization.
* B: Strongest shape-Costly, ignores balance; overkill likely.
* C: Scale up from small shape when fully utilized-Balances cost/time effectively.
* D: Random start with pre-tests-Unsystematic and inefficient.
* Reasoning: C incrementally increases resources based on utilization, optimizing both factors.
* Conclusion: C is correct.
OCI documentation advises: "To optimize compute shape for Jobs, start with a small shape, monitor utilization (e.g., CPU, memory) and runtime via OCI Monitoring. If fully utilized, scale up until performance plateaus-balancing cost and speed." A misfocuses on model tuning, B wastes cost, and D lacks structure- only C aligns with this method.
Oracle Cloud Infrastructure Data Science Documentation, "Optimizing ComputeShapes for Jobs".
質問 # 89
Which model has an open-source, open model format that allows you to run machine learning models on different platforms?
- A. PyTorch
- B. TensorFlow
- C. ONNX
- D. PySpark
正解:C
解説:
Detailed Answer in Step-by-Step Solution:
* Objective: Identify an open model format for cross-platform ML model execution.
* Evaluate Options:
* A. PySpark: A big data framework, not a model format.
* B. PyTorch: An ML framework with its own format, not inherently cross-platform without conversion.
* C. TensorFlow: An ML framework with its SavedModel format, not universally open across platforms.
* D. ONNX: Open Neural Network Exchange, an open-source format for model interoperability across frameworks.
* Reasoning: ONNX is designed for portability (e.g., convert PyTorch to ONNX, run in TensorFlow), unlike framework-specific options.
* Conclusion: D is the correct choice.
ONNX (D) is "an open-source model format that enables interoperability between ML frameworks like PyTorch and TensorFlow," per OCI documentation. PySpark (A) is a processing tool, while PyTorch (B) and TensorFlow (C) are frameworks with native formats-only ONNX ensures cross-platform compatibility.
Oracle Cloud Infrastructure Data Science Documentation, "Supported Model Formats".
質問 # 90
When preparing your model artifact to save it to the Oracle Cloud Infrastructure (OCI) DataScience model catalog, you create a score.py file. What is the purpose of the score.py file?
- A. Execute the inference logic code
- B. Configure the deployment infrastructure
- C. Define the compute scaling strategy
- D. Define the inference server dependencies
正解:A
解説:
Detailed Answer in Step-by-Step Solution:
* Objective: Define the role of score.py in OCI model artifacts.
* Understand Artifacts: score.py is key for deployment runtime.
* Evaluate Options:
* A: Infra config-Handled by OCI settings, not score.py.
* B: Inference logic-Correct; runs load_model(), predict().
* C: Scaling-Set in deployment, not score.py.
* D: Dependencies-In runtime.yaml, not score.py.
* Reasoning: B aligns with score.py's execution role.
* Conclusion: B is correct.
OCI documentation states: "score.py (B) contains the inference logic, including functions to load the model and predict outputs, executed by the deployment endpoint." A, C, and D are managed elsewhere-only B matches OCI's design.
Oracle Cloud Infrastructure Data Science Documentation, "Model Artifact - score.py".
質問 # 91
You are a data scientist working inside a notebook session and you attempt to pip install a package from a public repository that is not included in your conda environment. After running this command, you get a network timeout error. What might be missing from your networking configuration?
- A. Service Gateway with private subnet access
- B. NAT Gateway with public internet access
- C. Primary Virtual Network Interface Card (VNIC)
- D. FastConnect to an on-premises network
正解:B
解説:
Detailed Answer in Step-by-Step Solution:
* Objective: Fix network timeout for pip install in a notebook.
* Evaluate Options:
* A: FastConnect-On-premises link, not public internet.
* B: VNIC-Default, not the issue.
* C: NAT Gateway-Grants internet access-correct.
* D: Service Gateway-OCI services, not PyPI.
* Reasoning: C enables outbound traffic to public repos.
* Conclusion: C is correct.
OCI documentation states: "A NAT Gateway (C) is required for notebook sessions in private subnets to access public internet repositories like PyPI." A, B, and D don't provide this-only C resolves the timeout.
Oracle Cloud Infrastructure Data Science Documentation, "Notebook Networking".
質問 # 92
......
1z0-1110-25準備資料のガイダンスの下で、さまざまな学生に合わせた試験の焦点を提供し、例と図およびIT専門家を追加することで長くて退屈な参考書を簡素化できるため、より生産的かつ効率的になることができます変更できない問題を回避するために、1z0-1110-25ガイドトレントを毎日更新します。そして、あなたはあなたの日常生活の中で自分自身のために時刻表やto-soリストを設定する方法について1z0-1110-25研究急流を勉強することができます。したがって、1z0-1110-25学習教材の学習過程で喜びを見つけます。
1z0-1110-25練習問題: https://www.certjuken.com/1z0-1110-25-exam.html
- 1z0-1110-25受験練習参考書 ⛪ 1z0-1110-25最新日本語版参考書 🌞 1z0-1110-25日本語関連対策 🦸 ▶ 1z0-1110-25 ◀の試験問題は( jp.fast2test.com )で無料配信中1z0-1110-25受験練習参考書
- 1z0-1110-25テスト対策書 🍣 1z0-1110-25関連試験 🎫 1z0-1110-25復習内容 🤶 “ www.goshiken.com ”で使える無料オンライン版「 1z0-1110-25 」 の試験問題1z0-1110-25科目対策
- Oracle 1z0-1110-25試験に完全な1z0-1110-25テスト対策書をパスします:効率的なOracle Cloud Infrastructure 2025 Data Science Professional 🔚 ▛ www.jpexam.com ▟で《 1z0-1110-25 》を検索し、無料でダウンロードしてください1z0-1110-25復習内容
- 有難い-便利な1z0-1110-25テスト対策書試験-試験の準備方法1z0-1110-25練習問題 👸 ▛ 1z0-1110-25 ▟を無料でダウンロード▛ www.goshiken.com ▟で検索するだけ1z0-1110-25英語版
- 試験の準備方法-素晴らしい1z0-1110-25テスト対策書試験-効率的な1z0-1110-25練習問題 🍁 ( www.jpshiken.com )には無料の( 1z0-1110-25 )問題集があります1z0-1110-25受験練習参考書
- 1z0-1110-25絶対合格 🔌 1z0-1110-25試験内容 🚃 1z0-1110-25絶対合格 🧉 今すぐ[ www.goshiken.com ]で《 1z0-1110-25 》を検索し、無料でダウンロードしてください1z0-1110-25絶対合格
- 1z0-1110-25試験の準備方法|便利な1z0-1110-25テスト対策書試験|完璧なOracle Cloud Infrastructure 2025 Data Science Professional練習問題 🏍 ウェブサイト《 www.goshiken.com 》から➡ 1z0-1110-25 ️⬅️を開いて検索し、無料でダウンロードしてください1z0-1110-25資格問題集
- 便利な1z0-1110-25テスト対策書と有難い1z0-1110-25練習問題 🟨 URL 《 www.goshiken.com 》をコピーして開き、“ 1z0-1110-25 ”を検索して無料でダウンロードしてください1z0-1110-25試験過去問
- 便利な1z0-1110-25テスト対策書と有難い1z0-1110-25練習問題 📼 URL ⏩ www.jpexam.com ⏪をコピーして開き、⏩ 1z0-1110-25 ⏪を検索して無料でダウンロードしてください1z0-1110-25日本語学習内容
- 1z0-1110-25科目対策 🦂 1z0-1110-25日本語関連対策 👗 1z0-1110-25模擬問題 🎍 ⇛ www.goshiken.com ⇚サイトで▶ 1z0-1110-25 ◀の最新問題が使える1z0-1110-25関連試験
- 1z0-1110-25関連試験 🧦 1z0-1110-25教育資料 🖖 1z0-1110-25教育資料 🥘 時間限定無料で使える「 1z0-1110-25 」の試験問題は➥ www.it-passports.com 🡄サイトで検索1z0-1110-25最新日本語版参考書
- eduindiapro.com, igrandia-akademija.demode.shop, shortcourses.russellcollege.edu.au, uniway.edu.lk, thestartuptribe.biz, app.carehired.com, www.kala.co.ke, uniway.edu.lk, uniway.edu.lk, www.rmt-elearningsolutions.com